Bootstrapping the Studentized Sample Mean of Lattice Variables

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edgeworth Expansions for Spectral Density Estimates and Studentized Sample Mean

We establish valid Edgeworth expansions for the distribution of smoothed nonparametric spectral estimates, and of studentized versions of linear statistics such as the sample mean, where the studentization employs such a nonparametric spectral estimate+ Particular attention is paid to the spectral estimate at zero frequency and, correspondingly, the studentized sample mean, to reflect econometr...

متن کامل

Optimum Block Size in Separate Block Bootstrap to Estimate the Variance of Sample Mean for Lattice Data

The statistical analysis of spatial data is usually done under Gaussian assumption for the underlying random field model. When this assumption is not satisfied, block bootstrap methods can be used to analyze spatial data. One of the crucial problems in this setting is specifying the block sizes. In this paper, we present asymptotic optimal block size for separate block bootstrap to estimate the...

متن کامل

Bootstrapping variables in algebraic circuits

We show that for the blackbox polynomial identity testing (PIT) problem it suffices to study circuits that depend only on the first extremely few variables. One only need to consider size-s degree-s circuits that depend on the first log◦c s variables (where c is a constant and we are composing c logarithms). Thus, hitting-set generator (hsg) manifests a bootstrapping behavior— a partial hsg aga...

متن کامل

Bootstrapping Errors-in-Variables Models

The bootstrap is a numerical technique, with solid theoretical foundations, to obtain statistical measures about the quality of an estimate by using only the available data. Performance assessment through bootstrap provides the same or better accuracy than the traditional error propagation approach, most often without requiring complex analytical derivations. In many computer vision tasks a reg...

متن کامل

optimum block size in separate block bootstrap to estimate the variance of sample mean for lattice data

the statistical analysis of spatial data is usually done under gaussian assumption for the underlying random field model. when this assumption is not satisfied, block bootstrap methods can be used to analyze spatial data. one of the crucial problems in this setting is specifying the block sizes. in this paper, we present asymptotic optimal block size for separate block bootstrap to estimate the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 1993

ISSN: 0047-259X

DOI: 10.1006/jmva.1993.1037